Entanglement in Random Subspaces
نویسنده
چکیده
The selection of random subspaces plays a role in quantum information theory analogous to the role of random strings in classical information theory. Recent applications have included protocols achieving the quantum channel capacity and methods for extending superdense coding from bits to qubits. In addition, random subspaces have proved useful for studying the structure of bipartite and multipartite entanglement.
منابع مشابه
Concentration of measure effects in quantum information
Most applications of quantum information require many qubits, which means that they must be described using state spaces of very high dimension. The geometry of such spaces is invariably simple but often surprising. Subspaces, in particular, can be interpreted as quantum error correcting codes and, when the dimension is high enough, random subspaces form remarkably good codes. This is because i...
متن کاملOn the dimension of subspaces with bounded Schmidt rank
We consider the question of how large a subspace of a given bipartite quantum system can be when the subspace contains only highly entangled states. This is motivated in part by results of Hayden et al., which show that in large d × d–dimensional systems there exist random subspaces of dimension almost d, all of whose states have entropy of entanglement at least log d − O(1). It is also a gener...
متن کاملEffect of random telegraph noise on entanglement and nonlocality of a qubit-qutrit system
We study the evolution of entanglement and nonlocality of a non-interacting qubit-qutrit system under the effect of random telegraph noise (RTN) in independent and common environments in Markovian and non-Markovian regimes. We investigate the dynamics of qubit-qutrit system for different initial states. These systems could be existed in far astronomical objects. A monotone decay of the nonlocalit...
متن کاملRandom Quantum Channels Ii: Entanglement of Random Subspaces, Rényi Entropy Estimates and Additivity Problems
In this paper we obtain new bounds for the minimum output entropies of random quantum channels. These bounds rely on random matrix techniques arising from free probability theory. We then revisit the counterexamples developed by Hayden and Winter to get violations of the additivity equalities for minimum output Rényi entropies. We show that random channels obtained by randomly coupling the inpu...
متن کاملAspects of generic entanglement
We study entanglement and other correlation properties of random states in highdimensional bipartite systems. These correlations are quantified by parameters that are subject to the “concentration of measure” phenomenon, meaning that on a large-probability set these parameters are close to their expectation. For the entropy of entanglement, this has the counterintuitive consequence that there e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004